HardwareTeams.com - The #1 job board and blog for electrical and computer engineers


Compact python primer for MATLAB users #

The code below is a quick reference on how to do things in python using numpy and matplotlib that you probably do regularly if you are a MATLAB user.

It serves as a super compact MATLAB to Python cheatsheet.

Common Operations: sinusoids, ffts, and plotting #

# matlab-esque things in python

# first always import numpy and matplotlib
import matplotlib.pyplot as plt
import numpy as np

# basic signal creation
# matlab, x = exp(1i*2*pi*(0:Nsamples)*f/fs); 
fs = 5000
f = 500
Nsamples = 50
x = np.exp(1j * 2 * np.pi * np.arange(Nsamples) * f / fs)

# basic plotting, much like matlab
plt.figure(1)
plt.subplot(2,1,1)
plt.plot(np.arange(Nsamples), np.real(x), marker='o', linestyle='dashed')
plt.title('real portion of signal x')
plt.grid()
plt.xlabel('sample')
plt.ylabel('magnitude')
plt.legend('real')

plt.subplot(2,1,2)
plt.plot(np.arange(Nsamples), np.imag(x), marker='x', linestyle='dashed')
plt.title('imag portion of signal x')
plt.xlabel('sample')
plt.ylabel('magnitude')
plt.legend('imag')
plt.grid()
plt.draw()

# 2nd figure
plt.figure(2)
plt.plot(np.real(x), np.imag(x), marker='x')
plt.title('complex samples')
plt.draw()

# fft example + figure
x_fft = np.fft.fftshift(20*np.log10(np.abs(np.fft.fft(x, Nsamples))))
# equivalent to [-.5:1/Nsamples:.5-1/Nsamples] in matlab
xaxis = np.arange(-0.5, 0.5, 1/Nsamples)

plt.figure(3)
plt.plot(xaxis, x_fft, marker='o', linestyle='dashed')
plt.title('real portion of signal x')
plt.grid()
plt.xlabel('sample')
plt.ylabel('magnitude')
plt.legend('real')
# put last to show all figures
plt.show()

Common Function Conversions #

MATLAB Python
size(A) A.shape
length(A) len(A)
zeros(m, n) numpy.zeros((m, n))
ones(m, n) numpy.ones((m, n))
eye(n) numpy.eye(n)
rand(m, n) numpy.random.rand(m, n)
randn(m, n) numpy.random.randn(m, n)
linspace(a, b, n) numpy.linspace(a, b, n)
logspace(a, b, n) numpy.logspace(a, b, n)
reshape(A, m, n) numpy.reshape(A, (m, n))
transpose(A) numpy.transpose(A) or A.T
cat(dim, A, B) numpy.concatenate((A, B), axis=dim)
mean(A) numpy.mean(A)
sum(A) numpy.sum(A)
min(A) numpy.min(A)
max(A) numpy.max(A)
std(A) numpy.std(A)
var(A) numpy.var(A)
abs(A) numpy.abs(A)
sqrt(A) numpy.sqrt(A)
exp(A) numpy.exp(A)
log(A) numpy.log(A)
log10(A) numpy.log10(A)
sin(A) numpy.sin(A)
cos(A) numpy.cos(A)
tan(A) numpy.tan(A)
asin(A) numpy.arcsin(A)
acos(A) numpy.arccos(A)
atan(A) numpy.arctan(A)
ceil(A) numpy.ceil(A)
floor(A) numpy.floor(A)
round(A) numpy.round(A)
mod(A, B) numpy.mod(A, B) or A % B
power(A, B) numpy.power(A, B) or A ** B
max(A, B) numpy.maximum(A, B)
min(A, B) numpy.minimum(A, B)
unique(A) numpy.unique(A)
find(A) numpy.where(A)
isempty(A) len(A) == 0
HardwareTeams.com Copyright © 2024
comments powered by Disqus